
www.manaraa.com

IEEFIACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 4. AUGUST 1995 365

Link-Sharing and Resource Management
Models for Packet Networks

Sally Floyd, Member, IEEE, and Van Jacobson

Abstrud— This paper discusses the use of link-sharing mech-
anisms in packet networks and presents algorithms for hier-
archical link-sharing. Hierarchical link-sharing allows multiple
agencies, protocol families, or traflic types to share the bandwidth
on a tink in a controlled fashion. Link-sharing and real-time
services both require resource management mechanisms at the
gateway. Rather than requiring a gateway to implement separate
mechanisms for link-sharing and real-time services, the approach
in this paper is to view link-sharing and real-time service re-
quirements as simultaneous, and in some respect complementary,
constraints at a gateway that can be implemented with a unified
set of mechanisms. White it is not possible to completely predict
the requirements that might evolve in the Internet over the next
decade, we argue that controlled link-sharing is an essential
component that can provide gateways with the flexibility to
accommodate emerging applications and network protocols.

1. ImODumlON”

R

EQUIREMENTS for resour;e management in the In-
ternet include both services for real-time traffic and

link-sharing services. Real-time traffic is characterized by
a (fixed or adaptive) playback time at the receive~ real-
time packets arriving at the receiver after the playback time
are discarded. In a congested network, resource management
mechanisms are required at the gateway to meet realtime traffic
requirements for controlled delay and limited packet drops.
While there has been an abundance of research about the
needs of real-time traffic, link-sharing services have received
somewhat less attention in the research community.

The approach to controlled link-sharing described in this
paper has evolved in the context of the Internet. Because the
Internet is decentralized in nature, composed of multiple ad-
ministrative domains with a wide range of resource limitations,
the control of Internet resources involves local decisions on
usage as well as considerations of per-connection end-to-end
requirements. One function of link-sharing mechanisms is to

enable gateways to control the distribution of bandwidth on
local links in response to purely local needs. By allowing

Manuscrip(received February 23, 1995; approved by IEEE/ACM
TRAMACTICM ON NETWORKING Editor C. Partridge. This work was suppofled
by the Director, Office of Energy Research, Scientific Computing Staff, of
Ihe U.S. Dep~ment of Energy under Contract DE- AC03-76SFOO098 and
by ARPAICSTO.

The authors are with the Network Research Group, Lawrence Berkeley
Laboratory, Berkeley, CA 94720 USA (e-mail: tloyd6We.lbl.gov and
van@ee.lbl.gov).

IEEE Log Number 9412599

isolation between real-time and best-effort traffic in coop-
eration with packet scheduling algorithms that give priority
to the real-time traffic, controlled link-sharing can also be a
key component in enabling the deployment of priority-based
packet scheduling algorithms designed to meet the end-to-end

service requirements of real-time traffic.

One requirement for link-sharing is to share bandwidth on a

link between multiple organizations, where each organization

wants to receive a guaranteed share of the link bandwidth

during congestion, but where bandwidth that is not being used
by one organization should be available to other organizations
sharing the link. Examples range from the multiple agencies
that share the Trans-Atlantic FAT pipe and each pay a fixed
share of the costs [19] to individuals who share a single

ISDN line. Another requirement for link-sharing is to share

bandwidth on a link between different protocol families (e.g.,

1P and SNA) where controlled link-sharing is desired because

the different protocol families have different responses to
congestion. A third example for link-sharing is to share
bandwidth on a link between different traffic types, such as
telnet, ftp, or real-time audio and video.

We believe that the needs met by link-sharing are fundamen-
tal, given the presence of congestion. In particular, we believe
that the need to share links between multiple organizations

is not a transient stage that will disappear with the full

commercialization of the Internet (until or unless congestion

itself disappears). The hierarchical structure of organizations
is not a transient phenomena, and, given the availability of an
appropriate link-sharing framework, is likely to be reflected
in a continued desire for controlled link-sharing of local
resources such as network bandwidth. Additional needs met
by controlled link-sharing, discussed in more detail later in

the paper, include the ongoing need to accommodate new
services, and the need to control traffic aggregation in order to

realize the advantages of sharing between connections using

compatible congestion control mechanisms.
_ The various requirements for link-sharing, taken together
with requirements for realtime services, naturally lead to

a requirement for hierarchical fink-sharing. For example,
the bandwidth on a link might be shared between multiple
agencies, and each agency might want to share its allocated

bandwidth between several traffic types. This leads to a hierar-

chical link-sharing .w-ucfure associated with an individual link
in the network, with each class in the link-sharing structure

corresponding to some aggregation of traffic (or in some cases
to an individual connection).

1063+692/95$04.00 Q 1995 IEEE

www.manaraa.com

366 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 3. NO. 4. AUGUST 1995

Link-sharing services and real-time services involve simul-

taneous sets of constraints to be satisfied at the gateway.
This paper addresses the interaction between real-time services

and link-sharing services at the gateway. A key contribution
of this paper is an investigation of ways that link-sharing
can be incorporated into more general scheduling frameworks
such as priority-based scheduling. This paper proposes that
link-sharing explicitly enforced at the gateway can prevent
starvation of lower priority traffic while still satisfying the
needs of higher priority traffic, and give the network the
flexibility to accommodate new real-time applications.

As an example of the interaction between real-time services

and link-sharing, consider a link shared between two classes
of traffic, a real-time class and a bulk-data class. For the
purposes of the link-sharing algorithms, we make a conceptual
distinction between a general scheduler and a link-sharing
scheduler. In the absence of congestion, the gateway could use
whatever general scheduler seemed most appropriate, ranging
from a priority-based to a round-robin scheduler. However, in
the presence of congestion the gateway might determine that
one of the two classes was using more than its allocated share

of the link bandwidth, and invoke the link-sharing scheduler
to rate-limit the overlimit class to its allocated bandwidth. This
paper does not attempt to outline a complete packet-scheduling
algorithm; we instead are proposing a mechanism for incor-
porating controlled link-sharing into the packet scheduling
framework.

However, instead of implementing real-time and link-
sharing services with separate pieces of code, it is preferable
to use an integrated set of mechanisms for real-time and link-
sharing services. Identifying a set of low-level mechanisms
that can implement these services, and separating the low-level
mechanisms from higher-level policy, gives a flexible resource
management framework that allows evolution. Instead of
outlining a complete service model for the Internet, we
explore a set of low-level mechanisms that can be used
to efficiently support a range of real-time and link-sharing
services. Flexibility in the resource management framework is
particularly important because it is not easy to fully anticipate
the service requirements of emerging applications on the
Internet. Controlled link-sharing makes a key contribution to
this flexibility.

This paper focuses on the role of link-sharing in the resource
management framework. As an example of the flexibility
afforded by link-sharing, consider the current need in the
Internet for some mechanism to protect data traffic from the
growing volume of real-time Mbone traffic [7], as well as the
need to protect the real-time traffic from the delays caused
by competing data traffic. Given an environment with limited
bandwidth, fully meeting the needs of real-time traffic requires
a suite of real-time services including flow specifications
for the real-time applications, a set-up procedure such as
RSVP [21], and admissions control procedures to control
the number of admitted real-time connections, in addition to
appropriate scheduling mechanisms at the gateway. However,
by guaranteeing that data and real-time traffic each receive a

share of the link bandwidth over relevant time intervals, link-
sharing mechanisms can protect both Mbone and data traffic, in

the aggregate, even in the absence of a full suite of real-time
services.

We are not suggesting that each link in the Internet requires

a separate traffic class for each agency, protocol family, or
traffic type traversing that link. For example, organization-
based link sharing might be needed for a link such as the
Trans-Atlantic FAT pipe while another link has no need
for organization-based link sharing. Because different links
in a heterogeneous Internet will have different link-sharing

structures, two connections that are aggregated into one class
on one link might be in separate classes on the following
link. One benefit of the link-sharing framework proposed in

this paper is that it acknowledges the decentralized nature
of the Internet, and allows some local control of bandwidth
distribution.

The link-sharing goals, described in more detail in Sec-
tion II, are quite modest. The link-sharing mechanisms take
the minimum action required to ensure that classes receive
their allocated link-sharing bandwidth over the relevant time
interval. The link-sharing mechanisms in this paper do not

attempt to provide congestion control within a “leaf’ class, to
rate-allocate classes in the absence of congestion, to reshape
traffic, or to specify precisely the bandwidth to be received
by each class given the current demand. These issues are
determined by the general scheduler used at the gateway. The
link-sharing mechanisms do not, by themselves, attempt to
implement arbitrmy scheduling policies.

A hierarchical link-sharing structure can be used to specify
guidelines for the distribution of “excess” bandwidth. While

one could imagine complex requirements in terms of exactly
how “extra” bandwidth is distributed or what fraction of
bandwidth each class requires over a range of time intervals, in
this paper we restrict our attention to those fairly straightfor-
ward requirements that can be expressed by these hierarchical
structures. As Section II notes, while the distribution of “extra”
bandwidth beyond the constraints imposed by the hierarchical
link-sharing structure should not be arbitrary, this distribution
is a function of the general scheduler, and is not addressed
in this paper.

The approach to link-sharing in our paper is based on
the hierarchical class-based resource management proposed
initially by V. Jacobson [3]. This approach, now referred
to as class-based queueing (CBQ), outlines a set of flexible,
efficiently-implemented gateway mechanisms that can meet a
range of service and link-sharing requirements. Appendix A
discusses the implementation of CBQ in our simulator, and
gives a pointer to publically-available distributions of CBQ
implementations.

Our paper is in the context of a continuing discussion
about resource management in the Internet that involves con-
tributions from many people. As examples, see [2], [3], [4],
[18], [8]. The form of this paper was motivated in part as a
response to the scheduling architecture proposed in [18]. We
are in substantial agreement with much in [18]; Section VIII of
this paper elaborates on a disagreement over the relationship

between link-sharing services and real-time setwices. Thus, the
framework for this paper bomows heavily from the framework
in [18].

www.manaraa.com

FLOYD AND JACOBSON: LINK-SHARING AND RESOURCE MANAGEMENT MODELS 367

f’)Link nM&

●udio video~A telnet

2096 10% 0%

link-sharing allocation

Fig. i. Link-shining between service classes.

Section 11 describes the link-sharing goals in more detail.
Section 111gives the general guidelines for implementing hier-
archical link-sharing, given a resource management framework

consisting of a general scheduler and a link-sharing sched-
uler. Section IV explores some link-sharing guidelines that

are approximations to the more rigorous guidelines outlined
in Section 111. Section V shows some simulations of link-
shanng at the gateway. Section VI discusses the relationship
between the link-sharing goals and the goals for real-time
traffic. Section VII discusses link-sharing in terms of isola-
tion and sharing between traffic. Section VIII compares the
link-sharing framework discussed in this paper with related
work. Section IX gives conclusions and discusses future
work.

H. THE LINK-SHARING GOALS

This section gives a general discussion of the link-sharing
goals. The requirements for link-sharing are essentiality the
same whether the link-sharing is between service classes,
organizations, protocol families, or traffic types. We argue

that a single set of mechanisms for link-sharing should be
implemented and carefully coordinated with any additional
mechanisms for providing real-time service.

The link-sharing structure specifies the desired policy in
terms of the division of bandwidth for a particular link in times
of congestion. For example, for the link-sharing structure in
Fig, 1 the link is shared by a number of real-time and nonreal-
time traffic classes. The audio and video classes are examples
of leaf classes in the link-sharing structure. and the aggregated
Link class is an interior class. In Fig. i the telnet class could
be a class of delay-sensitive traffic such as X and NFS traffic
as well as telnet traffic. Similarly, the mail class could be a
class of delay-insensitive traffic such as NNTP and FAX as
well as mail traffic.

For a flat link-sharing structure such as in Fig. 1, the
link-sharing requirements are fairly straightforward. A link-
sharing bandwidth is allocated to each class (expressed in
Fig. 1 as a percentage of the overall link bandwidth). These
link-sharing allocations could be either static (permanently
assigned by the network administrator) or dynamic (varying
in response to cument conditions on the network, according

to some predetermined algorithm). The first Iink-sharing goal
is that each class with sufficient demand should be able to
receive roughly its allocated bandwidth, over some interval of

Iink-sharing allocation

Fig. 2. Link-sharing between multiple agencies or promeol families

time, in times of congestion. As a consequence of this link-
sharing goal, in times of congestion some classes might be
restricted to their link-sharing bandwidth. For a class with

a link-sharing allocation of zero, such as the mail class in

Fig. 1, the bandwidth received by this class is determined by
the other scheduling mechanisms at the gateway; the link-
sharing mechanisms do not “guarantee” any bandwidth to this
class in times of congestion.

The link-sharing goals are a rough quantitative bandwidth
commitment by the network. Associated with these link-
sharing goals is some notion of the time interval over which

the link-sharing goals apply. As discussed later in the paper,
this is determined by the time constant used in estimat-

ing the past bandwidth used by each class. For example,
in Fig. 1 it might be considered unacceptable if the telnet
and ftp classes were denied service for minutes at a time.
On the other hand, fine-grained scheduling to ensure that
the telnet and ftp classes each receive their allocated link-
sharing bandwidth over arbitrarily-small time intervals is not
required. Priority-based scheduling can be used to reduce

delay for the real-time traffic, while the link-sharing mech-
anisms prevent starvation of the ftp traffic over longer time
intervals.

A secondary link-sharing goal is that when some class is not
using its allocated bandwidth, the distribution of the “excess”
bandwidth among the other classes should not be arbitrary, but
should follow some appropriate set of guidelines. For a flat
link-sharing structure, this distribution of excess bandwidth is
determined by the other scheduling mechanisms used at the
gateway, and is not specified by the link-sharing structure.
For example, consider link-sharing between organizations or
protocol families, as in Fig. 2. If agency A has little traffic to
send, agency B might consider it unfair or arbitrary if all of the
“excess” bandwidth was given to agency C. For link-sharing
between agencies or between protocol families, the scheduling
mechanisms could distribute “excess” bandwidth in a way that
takes into account the relative link-sharing allocations of those
entities.

Multiple link-sharing constraints at a gateway can be ex-
pressed by a hierarchical link-sharing structure such as in

Fig. 3. The link-sharing structure in Fig. 3 illustrates link-
sharing between organizations, between protocol families,
between service classes, and between individual connections

www.manaraa.com

368 IEEWACM TRANSACTIONS ON NETWORKING. VOL. 3, NO. 4, AUGUST 1995

n Link

e-a
1% ““” 1% 15% 5%

Fig. 3. A hierarchical link-sharing stmcture.

within a service class; this is not meant to imply that all

link-sharing structures at all links should include all of these

forms of link-sharing. All arriving packets at the gateway are

assigned to one of the leaf classes; the interior classes are
used to designate guidelines about how ‘excess’ bandwidth
should be allocated. Thus, the goal is that the three service
classes for agency A should collectively receive 50% of the
link bandwidth over appropriate time intervals, given sufficient
demand. If the real-time class for agency A has little data to
send, the hierarchical link-sharing structure specifies that the

“excess” bandwidth should be allocated to other subclasses of

agency A.

The link-sharing goals can be summarized as follows.

Lin/c-Sharing Goals:

1)

2)

Each interior or leaf class should receive roughly its

allocated link-sharing bandwidth over appropriate time
intervals, given sufficient demand.
If all leaf and interior classes with sufficient demand

have received at least their allocated link-sharing band-

width, the distribution of any ‘excess’ bandwidth should

not be arbitrary, but should follow some set of reason-

able guidelines. •1

The implementation of the first link-sharing goal is dis-

cussed in detail in this paper. As mentioned in the Introduction,

the first link-sharing goal is limited by the constraints of the
hierarchical class structure.

The second link-sharing goal concerning the further distri-

bution of excess bandwidth is not addressed in this paper.

This second link-sharing goal simply states that when the

distribution of bandwidth is not constrained by the hierarchical

link-sharing structure, that distribution should nevertheless not

be arbitrary, but should follow some acceptable policy. The

guidelines for the distribution of excess bandwidth should
reflect both these higher-level policy concerns and realistic
limitations imposed by efficiently-implemented schedulers.
The distribution of excess bandwidth for the scheduler in our

simulator is discussed in Appendix A.2.

om

0% Iink-sharing alkwation

Note that the link-sharing goals do not attempt to address

all of the questions of congestion control at the gateway.

The link-sharing mechanisms monitor and control bandwidth
allocations between various classes of traffic; the question of
congestion control for the traffic within a class remains. For
leaf classes that contain a number of aggregated connections,
congestion control within the class could be provided by
the use of end-to-end transport protocols such as TCP, by
an explicit admissions control procedure for that class, or
by a connection-based scheduling algorithm instead of FIFO
scheduling within the class. For some classes of video traffic,
congestion control within the class could be provided by some
form of source- or receiver-based rate-adaptive congestion

control. For some classes, the gateway could use RED gateway
mechanisms to monitor the average queue size and provide
appropriate feedback to the sources [11].

The link-sharing goals require a data structure associated
with each link, describing the class structure at that link, and
giving the link-sharing bandwidth for each class. In addition
to the possibility of dynamic bandwidth allocations to existing
classes, the link-sharing structure itself for a particular link can
have both static and dynamic components. A static link-sharing
structure with fixed classes and bandwidth allocations might
be appropriate for a link shared between multiple agencies; in
this case, the link-sharing bandwidth allocated to each agency
might be set by the network administrator. On the other hand,
a link-sharing structure with dynamic components would have
provisions for the creation and removal of subclasses and for
the adjustment of bandwidth allocations. Such a dynamic link-
sharing structure would be appropriate when the link-sharing
mechanism is used to monitor the bandwidth of specific real-

time traffic flows, while at the same time ensuring that the
real-time flows don’t monopolize the bandwidth on the link.
For dynamic link-sharing, some mechanism is needed to limit
the lifetimes of dynamically-created classes. This issue of
lifetime restrictions is not addressed in this paper, but should
be considered in the context of set-up protocols and admissions

control procedures for real-time traffic.

www.manaraa.com

FLOYD AND JACOBSON LINK-SHARING AND RESOURCE MANAGEMENT MODELS 369

111. FORMAL LINK-SHARING GUIDELINES

This section gives formal guidelines for implementing hi-

erarchical link-sharing at the gateway. Section IV discusses

heuristics that approximate these formal link-sharing guide-

lines.

Definitions: General Scheduler, Link-Sharing Scheduler:

This paper assumes that each class has its own queue at
the gateway, The conceptual framework further assumes that
the scheduling mechanisms include a general scheduler that
schedules packets from leaf classes without regard to link-
sharing guidelines. and a [ink-shoring scheduler that schedules

packets from some leaf’ classes that have been exceeding their

link-sharing allocations in times of congestion. We assume

that all arriving packets are associated with a leaf class in the

link-sharing structure. ❑

One job ot’ the general scheduler is to provide for real-time

traffic that has particular delay or throughput requirements.
The general scheduler could be one of a number of proposed
scheduling algorithms that determines the packet-by-packet
scheduling necessary to meet the service goals. We generally

assume (hat a priority-based general scheduler is used, but

this paper does not specify the general scheduler in more

detail. The priorities and definitions of the classes in the

class structure are a policy issue that is not addressed in this
paper.

Dejinitiorrs: Regulated and Unregulated Classes: We call a
class a regulated class if packets from that class are being
scheduled by the link-sharing scheduler at the gateway; we call

a class unregulated if traffic from the class is being scheduled
by the general scheduler. Like the distinction between the

general and the link-sharing scheduler, this distinction between

regulated and unregulated classes is introduced for conceptual

purposes, and is used by the link-sharing algorithms described

later in the paper. Any implementation will have a single
integrated scheduler. In general, classes will change status
from regulated to unregulated, and back, as conditions in the
network change. ❑

The link-sharing scheduler could use one of a number

of algorithms to restrict the bandwidth of regulated classes.
One option for the link-sharing scheduler is to rate-limit the

regulated class to its link-sharing bandwidth; this regulation
would be accompanied by some strategy for dropping arriving

packets when necessary. However, there are other options; as
an example, the link-sharing scheduler could simply decrease
the priority of the regulated class, so that the general scheduler
schedules packets from that class less frequently.

Definitions: Classi]er, .Evtimator: In addition to the gen-
eral scheduler and the link-sharing scheduler, required link-
sharing mechanisms include a classljier and an estimator.

The clas.ri/ier classifies packets arriving at the gateway to the

appropriate c~ass for that output link. [19] describes an efficient
implementation of a classifier. While there are many open
questions concerning the guidelines used for the classification
of pdckets, these questions are orthogonal to scheduling issues,
and will not be discussed further in this paper. In particular,
we don’ t take a position on whether classification should be

based on explici(requests for service from applications, or

on packet fields (e.g., source and destination addresses, the
protocol field) determined by the network.

The estimator estimates the bandwidth used by each class

over the appropriate time interval, to determine whether or
not each class has been receiving its link-sharing bandwidth.

The time constant for the estimator is a critical parameter; this
time constant determines the interval over which the gateway
attempts to enforce the link-sharing guidelines. Appendix A
discusses the estimator in more detail. •1

This paper focuses on the interaction between the general
scheduler and the link-sharing scheduler. In the absence of
persistent congestion, the general scheduler is all that is
required to schedule traffic on the output link. However, in the

presence of congestion lhe gateway might also want to take

into account link-sharing goals for sharing the link bandwidth

among different traffic types, protocol families, or agencies.
The link-sharing guidelines in this section specify when a
class can continue unregulated and therefore scheduled by the
general scheduler, and when the class should be regulated by
the link-sharing scheduler.

While this paper makes a conceptual separation between the

general scheduler and the link-sharing scheduler, this does not
imply that the two schedulers consist of separate sections of

code. For example, as Appendix A explains, in our simulator
the “link-sharing scheduler” and “general scheduler” simply
use different algorithms in setting a class parameter called [he
time-to-send field that indicates the next time that a packet is
allowed to be sent from that class.

Definitions: Overlimit, Underlimit, At-Limit: A class is
called overlimit if it has recently used more than its allocated
link-sharing bandwidth (in bytes/s, as averaged over a specified
time interval), underlimil if it has used less that a specijed

fraction of its link-sharing bandwidth, and a?-limit otherwise.
The limit status of each class is determined by the estimator,
and is used to determine when explicit action should be taken
to correct the link-sharing behavior of the traffic, ❑

Note that with these definitions, if the root node of the
link-sharing structure, representing the link itself, is allocated
100% of the link bandwidth, then the root class can never be
overlimit.

Definitions: Satisjed, Unsatisyled: A leaf class is defined as
unsatisfied with the link-sharing behavior if it is underlimit and
has a persistent backlog, and satisfied otherwise. A nonleaf
class is defined as unsatisfied with the link-sharing behavior if
it is underlimit and has some descendant class with a persistent

backlog.
We do not define a persistent backlog in more detail; the

exact definition should be a policy issue. The intention is
that an unsatisfied class is a class that is underlimit and that
has sufficient demand to use additional bandwidth. While an
underlimit class that occasionally has a packet or two in the

queue for a brief time should probably not be considered
unsatisfied with the link-sharing behavior, in our simulator’s
implementation of the formal link-sharing guidelines any class

with a nonempty queue is defined as having a persistent
backlog. The notion of a persistent backlog is not used in the
approximations to the formal link-sharing guidelines presented
in the next section. ❑

www.manaraa.com

370 IEEEYACMTRANSACTIONSON NETWORfUNG,VOL. 3, NO. 4, AUGUST 1995

(Cases 1-3)

c2n4 (’-”)

(Case 4 and Legend)

Fig. 4. Examples of link-sharing scenarios.

In proposing formal link-sharing guidelines, we first con-
sider a link with a flat link-sharing structure, as in Fig. 1.
In this case, the link-sharing guidelines are fairly clear and
intuitive. When a class is not overlimit or when there are
no unsatisfied classes, then the class does not need to be
regulated by the link-sharing scheduler. However, when a
class is overlimit and some other class is unsatisfied, then
the overlimit class is contributing to congestion on the link,
and should be regulated by the link-sharing scheduler. This
regulation should continue until the class is no longer overlimit
or until there are no more unsatisfied classes.

Given these guidelines for link-sharing, an overlimit class
is only regulated when some other class has unfilled demand
and has not been receiving its allocated bandwidth over the
specified time interval. When all classes are satisfied with the
link-sharing behavior, no classes have to be regulated.

For a hierarchical link-sharing structure, the link-sharing
guidelines are an extension of the guidelines given above.
First, we define the level of a class in the link-sharing structure.

Definitions: Levels: All leaf classes in a link-sharing struc-
ture are defined to he at level 1, and each interior class has a
level one greater than the highest level of any of its children.
An example of levels is shown in Case 1 in Fig. 4. •1

The formal link-sharing guidelines given below implement
the link-sharing goals described in the previous section. The
formal link-sharing guidelines specify when a class is allowed
to borrow unused bandwidth from ancestor classes.

Formal Link-Sharzng Guidelines: A class cars continue un-
regulated if one of the following conditions hold

1) The class is not overlimit, OR

2) The class has a not-overlimit ancestor at level i, and

there are no unsatisfied classes in the link-sharing struc-
ture at levels lower than 2.

Otherwise, the class will be regulated by the link-shaxing
scheduler. ❑

Note that these link-sharing guidelines are used simply to
decide if a class is allowed to be scheduled by the general
scheduler, unregulated, or whether the class should have
its bandwidth regulured by the link-sharing scheduler. The

division of the available bandwidth between the unregulated

classes is determined by the generaI scheduler. The link-
sharing guidelines are simply used to determine when some
class is using more than its allocated bandwidth and con-
tributing to the unsatisfied state of some other class in the
link-shining.

The cases below, illustrated in Fig. 4, illustrate the for-
mal link-sharing guidelines. For each example link-sharing

structure in Fig. 4, the bold circles mark the overlimit and

underlimit classes, and small queues show which classes have

a persistent backlog. Given this status, the formal link-sharing
guidelines are applied to determine which classes need to be
regulated. In Fig. 4 the leaf classes labeled “ 1” are real-time
classes and the classes labeled “2” are nonrerd-time classes.

Case 1: Consider a link-sharing hierarehy where no classes
are unsatisfied. In this case no classes need to be regulated. ❑

Case 2: In thk case there are NO overlimit classes, but only
the Agency B nonreal-time class is unsatisfied, and the Agency
A class is not overlimit. From the link-sharing guidelines,
neither real-time class is allowed to borrow from their parent

classes and therefore both real-time classes will be regulated.
Appendix C examines the pathological behavior that could

result if the Agency A real-time class was allowed to continue
unregulated in this case. •1

Case 3: In this case the Agency A class and the Agency

A real-time class are overlimit, while the Agency B class

and Agency B nonreal-time class are unsatisfied. From the
link-sharing guidelines, the Agency A real-time class needs to
be regulated. Because the formal link-shting guidelines take
into account the limit status of ancestor classes, hierarchical
link-sharing can be provided. •1

www.manaraa.com

FLOYD AND JACOBSON: LINK-SHARING AND RESOURCE MANAGEMENT MODELS 37 I

Case4: In this case no leaf classes are unsatisfied, but
the Agency A class itself is unsatisfied. Because the Agency
A class is underlimit and there are no unsatisfied classes at

Iower levels, the Agency A nonreal-time class can continue

unregulated. However, according to the link-sharing guidelines
the Agency B real-time class should be regulated. This is an-
other example of how the link-sharing guidelines can provide
hierarchical link-sharing. ❑

Note that we did not specify in the link-sharing guidelines
how frequently the scheduler should check whether or not a
class needs to regulated. In our implementation the general
scheduler checks whether or not a class can continue to send
unregulated just before transmitting a packet from that class,
but this check could also be made less frequently.

When should the control of a class by the link-sharing

scheduler be terminated? One possibility is that a regulated
class should remain regulated as long as the formal link-
sharing guidelines are not met. A class might oscillate fre-
quently between being regulated and being unregulated, but
this is not necessarily a problem. If for implementation reasons
it is desired to reduce the frequency of these oscillations, the
following guidelines could be used:

Alternate Link-Sharing Guidelines: A class can continue

unregulated if one of the following conditions hold:

1) The class is not overlimit, OR
2) The class has a not-overlimit ancestor at level i, and the

link-sharing structure has no unsatisfied classes at levels
lower than i.

Otherwise, the class will be regulated by the link-sharing
scheduler.

A regulated class will continue to be regulated until one of

the following conditions hold:

I) The class is undedimit, OR
2) The class has a underlimit ancestor at level i, and the

link-sharing structure has no unsatisfied classes at levels
lower than i. ❑

Definitions: Exempt, Bounded, and Isolated Classes: A }ink-
sharing structure could mark some classes as either exemp[or
bounded, if desired. [18] introduces the notion of exempt traffic
that is never restricted by the scheduler to its allocated link-
sharing bandwidth, regardless of the level of congestion on

the output link.’ Our link-sharing structure would designate an
exempt class by assigning the class a link-sharing bandwidth
of 10()% of the link bandwidth. For an exempr class, either the
general scheduler and the admissions control procedure should
ensure that the traffic from the class does not violate the link-
sharing goals, or there should be a clear understanding that
scheduling this traffic takes precedence over the link-sharing
goals.

A bounded class is not allowed to borrow from ancestor
classes, regardless of the limit status of those classes. This
might be done, for example, for a traffic class consisting of
a single high-priority real-time connection where low jitter is
more important than low average delay. In our implementation

1The proposal in [181, [16] is for real-time traffic to be exempt, and for
the admissions control procedure to be the sole mechanism to ensure that the
real-time traffic does not violate the link-sharing goals.

of the link-sharing structure each class has both a “parent”
field giving that class’s parent in the class tree and a “borrow”
field indicating whether or not that class is allowed to borrow
unused bandwidth from the parent. A bounded class would
have the “borrow” field set to not allow borrowing.

An isolated class is one that does not allow nondescendant

classes to “borrow” its unused bandwidth, and that does not
borrow bandwidth from other classes in turn. An isolated class
would leave the parent field empty, and would simply be
assigned a fraction of the link bandwidth. ❑

The formal link-sharing guidelines are discussed further in
Appendix B.

IV. APPROXIMATIONS TO THE

FORMAL LINK-SHARING GUIDELINES

The previous section described a set of formal link-sharing
guidelines. With the formal guidelines the decision whether
or not to regulate a class depends not only on the limit
status of parent classes but also on the “satisfied” status
of other classes in the same link-sharing structure. It is
possible that these formal link-sharing guidelines could be
efficiently implemented given appropriate architectures and/or

data-structures. However, in this section we explore several
approximations to formal link-sharing that lend themselves
more readily to efficient implementations. This section dis-
cusses two approximations to formal, link-sharing; the first
approximation is Ancestors-Only link-sharing. The second
approximation, Top-Level link-sharing, gives improved per-
formance over Ancestors-Only link-sharing,

In Ancestors-Only link-sharing, for ease of implementation,

the decision whether or not to regulate a class is deter-
mined only by the limit status of that class and of parent
classes. A simple example with a flat link-sharing structure
illustrates some of the difficulties of such an approach. For
the link-sharing structure in Fig. 1, an overlimit leaf class
cannot remain unregulated when the root class is at-limit
and the output link is at full capacity; if this were the case,
then an overlimit class could never be regulated. The most
straightforward answer is to allow an overlimit class to remain
unregulated only when some ancestor class is underlimit
(instead of simply being not ovedimit).

The Ancestors-Only link-sharing guidelines are as follows:
Ancestors-Only Link-Sharing Guidelines: A class can con-

tinue unregulated if one of the following conditions hold:

1) The class is not overlimit, OR
2) The class has an underlimit ancestor.

Otherwise, the class will be regulated by the link-sharing
scheduler. c1

One drawback of the Ancestors-Only approach is that
because the ‘satisfied’ status of sibling classes is not examined,
no distinction can be made between the Agency A real-
time class in Case 1 and the Agency B real-time class in
Case 2. In this case, either the Agency A real-time class in
Case 1 will be regulated unnecessarily, as required by the
Ancestors-Only link-sharing guidelines above, or neither real-
time class will be regulated and the link-sharing goals will not
be satisfied.

www.manaraa.com

372 fEEIYACM TRANSACI’IONS ON NETWORKING, VOL. 3. NO. 4, AUGUST 1995

Fig. 5. Sensitivity of Ancestors-Only link-sharing.

While Ancestors-Only link-sharing gives acceptable results

in most occasions, it is not as robust as formal link-sharing.
Because the estimator distinguishes between at-limit and un-
derlimit ancestor classes, allowing an overlimit leaf class to
remain unregulated only when there is an underlimit ancestor,
Ancestors-Only link-sharing is sensitive to the quantitative
parameter used to distinguish between at-limit and underlimit
classes.

Ancestors-Only link-sharing can be sensitive to other pa-
rameters of the estimator as well. For the link-sharing structure
in Fig. 5, assume that, following a period when Agency B
traffic used all of the link bandwidth, the priority-one class
in Agency A has recently sent a large burst of packets,
and has just been labeled by the estimator as overlimit.
The Agency A real-time class will continue to be able to
send unregulated as long as the estimator continues to label
the Agency A class itself as underlimit, regardless of the
unsatisfied state of Agency A’s priority two class. Thus,
Ancestors-Only link-sharing is sensitive to the maximum burst
that can be sent before a previously-idle interior class is
considered overlimit.

To illustrate some of the weaknesses of Ancestors-Only
link-sharing, consider the link-sharing structure in Case 4 in
Fig. 4, and assume that the general scheduler gives priority
to real-time traftic over nonreal-time traffic. Assume further
that the Agency A real-time class has little data to send for
an extended period of time, and that the Agency B real-time
class has unfilled demand. Whh Ancestors-Only link-sharing,
the Agency B real-time class is allowed to send unregulated
whenever the root class is underlimit, regardless of the limit
status of Agency A. The result is that both Agency A and the
root class will cycle between being underlimit and being not-
underlimit, and the Agency A normal-time class will cycle
between receiving and not receiving bandwidth, If Agency A
is limited in the ‘credit’ that it gets for being idle for periods
of time, then Agency A could receive less than its allocated

link-sharing bandwidth.
The Top-Level link-sharing guidelines, which use a slight

modification of the Ancestors-Only approach, give a more
robust approximation to formal link-sharing. In the Top-Level
guidelines, the gateway still examines the limit status of

ancestor classes. However, in addition the Top-Level approach
considers the levels of the various classes in the hierarchical
link-sharing structure. The gateway maintains a Top-Level

variable that indicates the highest level from which a class
is allowed to “borrow” bandwidth. As in formal link-sharing,
where classes are not allowed to borrow frbm ancestors at
level z or above if there are unsatisfied classes at level

z – 1, Top-Level link-sharing uses the Top-Level variable to

indicate the highest level from which a class may borrow

bandwidth, and uses various heuristics to set the Top-Level
variable.

Top- f.evel Link-Sharing Guidelines: A class can continue
unregulated if one of the following conditions hold:

1) fie class is not overlimit, OR
2) The class has art underlimit ancestor whose level is at

most Top-Level.

Otherwise, the class will be regulated by the link-sharing

scheduler. •1

This is a range of possibilities for heuristics for setting the
Top-Level variable. When Top-Level is set to Infinity, then Top-
Level link-sharing is identical to Ancestors-Only link-sharing.
When Top-Level is set to the lowest level that has an unsatisfied
class, then Top-Level link-sharing is essentially the same as
formal link-sharing. For example, if the gateway sets Top-

Level to 1 when there is a class that is not overlimit and that
has a nonempty queue, then for as long as Top-Level remains
set to 1, only classes that are not overlimit will be able to
send packets. However, rather than precisely implementing
formal link-sharing, and continually updating the Top-Level
variable as queues build up and disperse and as classes change
their limit status, Top-Level link-sharing avoids some of the
overhead by using simplier heuristics to set the Top-Level
variable.

Our simulator uses the guidelines below for setting the
Top-Level variable.

Heuristics for Setting the Top-Level Variable:

1)

2)

3)

If a packet arrives for a not-overlimit class, set Top-Level

to 1.
If Top-bvel is Z, and a packet arrives for an overlimit
class with an underlimit parent at a lower level than z
(say j), then set Top-Level to j.
After a packet is sent from a class, and that class now
either has an empty queue or is unable to continue
unregulated, then set Top-Level to Injinity .

With these guidelines, the gateway sets Top-Level to z only
when the gateway knows that some class can send a packet
without borrowing from an ancestor above level i. The setting
of the Top-Level variable reflects partial knowledge of the
gateway. For example, with these guidelines the Top-Level
variable might be greater than 1 even though there is a not-
overlimit class with a nonempty queue.

While Top-Level link-sharing requires the additional over-

head in maintaining the Top-Level variable, compared to
Ancestors-Only link-sharing, there are other ways in which
Top-Level link-sharing requires less overhead than Ancestors-

Only link-sharing. For example, in Top-Level link-sharing
when the Top-Level variable is one, then the scheduler doesn’t

www.manaraa.com

PLOYD AND JACOBSON LINK-SHARING AND RESOURCE MANAGEMENT MODELS 373

AGENCY AGE:CY AQEAWY AGEa$CY
A

VIDEO Vlmo FTP FTP
SOURCE WXIRCE SOURCE SOURCE

I
>[

,<-
1’ \,,

)
; ,,, –

/’,,
lohmpl. . .

1

I I GATEWAY

1.5Mb@
I

Fig. 6. Simula{itm scenario fortwwagency link-sharing

(_”)Link

1,3% 1,32% 2, 65%

priority,link-sharing allocation
Fig, 7. I.ink-shmings tructure forthe simulation of flat link-sharing

check the limit status of parent classes before deciding whether
or not a class needs to be regulated.

V. LINK-SHARING SIMULAmONS

A. Comparisons of Formal, Ancestors-Only,
and Top-Level Link-Sharing

This section illustrates the performance differences be-
tween formal, Ancestors-Only, and Top-Level link-sharing in
a simulation environment with extremely simple traffic arrival
patterns.

Fig. 6 shows the network scenario for one of the sim-
ulations. Each simulation network has a single congested

gateway, with the various link-sharing structures for the con-
gested link shown in Figs. 7 through 9. Each class has a
single constant-bit-rate source with its own input link to
the congested gateway, and each class has sufficient demand
to use the entire link bandwidth of the shared link. These
(admittedly unrealistic) sources are used as a simple way to
explore link-sharing free from extraneous influences. In these
simple simulations the traffic for each class is generated by a
single source, but in general the traffic in a class could consist
of many connections from many different sources. In these
simulations, the ftp packets are 1000 bytes. The video packets

are somewhat arbitrarily set at 190 bytes, and the audio packets
range from 250 to 500 bytes. The packet sizes were chosen
simply to explore the behavior with a range of packet sizes
for the various connections.

&&
1,20% 2,40% 1,10% 2,20%

priority, link-sharing bandwidh

Fig. 8. Link-sharing strocture for the simulation of two-agency link-sharing.

50%

(A

6tilf!$ @6@
1,5% 2, 45% 1,5% 2,5% 1,s% %25%

priority, tink-sharing bdwidth

Fig. 9. Lhk-sharing structure for the simulation of lhree-agency link-
sharing.

For the implementation of link-sharing in these simulations,
the gateway maintains a separate queue for each leaf class,
where each queue can hold 20 packets. Arriving packets for

a class are dropped when that class’s queue is full. Each leaf

class in the link-sharing structure is assigned a priority level as
well as a link-sharing allocation. The general scheduler in our
simulator uses strict priority. For classes of the same priority
the general scheduler uses a variant of weighted round-robin,
with weights proportional to the link-sharing bandwidths of
the classes. Thus within a priority level the general scheduler
distributes bandwidth according to the link-sharing allocations
of the classes. The link-sharing scheduler in our simulator rate-
limits each regulated class to its link-sharing bandwidth. The
estimator, general scheduler, and link-sharing scheduler in the
simulator are explained in more detail in Appendix A. The
time constant used by the simulator’s estimator for computing
the limit status for a class is relatively small, equal to the time
to transmit 16 packets from the class.z

For the simulation in Fig. 10, the congested link uses the flat
class structure in Fig. 7, which has two high-priority classes
and one lower priority class. The z-axis in Fig. 10 shows time
and the y-axis shows the average bandwidth used by each
class over one-second intervals, as a percentage of the link
bandwidth. In the simulation, for each traffic class in turn the
source stops transmitting for some seconds. The idle source is
indicated at the bottom of the figure.

2The firne conskmr for the esti mater is defined in Appendix A

www.manaraa.com

374 IEEtYACM TRANSACITONS ON NETWORIUNG, VOL. 3, NO, 4, AUGUST 1995

0

o 10 20 xl
Time Insacon&

Fig. 10. Flat link-sharing with Top-Level link-sharing guidelines.

~ .. ----------- ----------
totaltraffic

agencyA------,.-. -------- ------------ ,...---—--
//

/’;’ , ;,,: ,

'"""'""""`"""""""`"'`"""'"""""""""``""`"""""agemyB

Idle .Scaww

[“%7
Itilpl If@Al {bBl I.llwe.ol

o 10 xl so 40
Time inaeeomla

Fig. 11. ‘Rvo-agency link-sharing with formal Iink-shating guidelines.

The simulation shows that when all sources are transmitting
(e.g., from time 2 to time 6), each class reeeives roughly its
link-sharing allocation. When the ftp class stops transmitting
for a few seconds at time 7, the “excess” bandwidth is shared
between the two real-time classes in proportion to the link-
sharing bandwidths of those two classes. This sharing results
from the weighted round-robin within priority levels used by
the simulator’s general scheduler. When the video class stops
transmitting for a few seconds, the “excess” bandwidth is used

by the audio class, because the general scheduler gives the
audio class priority over the ftp class. Similarly, when the
audio class stops transmitting for a few seconds, the small
measure of “excess” bandwidth is used by the video class.
Even though the general scheduler uses priority scheduling, the
link-sharing mechanisms ensure that the ftp class receives at
least its link-sharing bandwidth when it has sufficient demand.

This simulation gives essentially the same results with formal,
Ancestor-Only, or Top-Level link-sharing.

For the simulations in Figs. 11 through 13 the congested

link uses the two-agency class structure in Fig. 8. The figures
show simulations with formal, Ancestor-Only, and Top-Level
link-sharing. The solid lines show the bandwidth used by the

two video classes, the dotted lines show the bandwidth used
by the two ftp classes, and the dashed lines show the aggtegate

bandwidth used by the interior classes. In each simulation the

source for each class stops transmitting for some seconds.
Note that when each class stops transmitting, the “excess”

-----------.
~---itiltmfi

,------. ---. -w?wA/,------------ .,,, ------- . ;,-----
:;
(,
:/
;

ma Bourw
pid&l IT! If@A/ lltPBl Iallwdeol

o 10 20 m 40
Timein seconds

Fig. 12. Two-agency link-sharing with Ancestor-Only link-shting guide-
lines.

~ j ;---~*i~&~--------

$- / aw.rwyA-------- ---- .------, ,-----

i

,.......,...,...........................
agencyB

0
Ida Bowx

r’r’l 1%..1 lflPAl lf@B I Iallvideol

o 10 20 so 40
Timeinsaconde

Fig. 13. Two-agency link-sharing with Top-Level Iink-sharing guidelines.

bandwidth is used by the other class in the same agency, as the
hierarchical link-sharing structure specifies. Thus, each agency
receives roughly its link-sharing bandwidth as long as it has
sufficient demand. Near the end of the simulation, the video
sources stop transmitting again, and each ftp class receives the
link-sharing allocation of its parent class.

Note that in the simulation with formal link-sharing, each
agency reeeives its link-sharing Woeation throughout the
simulation. In the simulation with Ancestor-Only link-sharing,
when the agency A tlp class stops sending some of the “extra”
bandwidth is taken by the agency B video class, and agency
A receives less than its link-sharing allocation for part of the
simulation. This problem is largely corrected in the simulation
with Top-Level link-sharing.

For the simulation in Fig. 14, the congested link uses the
three-agency class structure in fig. 9. in tils simulation all
three video classes are marked as bounded and are not allowed
to use bandwidth from parent classes. Thus each video class
reeeives at most 5% of the link bandwidth regardless of other
traffic on the link. This simulation shows that when the source
for one of the ftp classes stops transmitting for a few seeonds,
the “excess” bandwidth is dktributed between the other two ftp
classes, roughly in proportion to the link-sharing allocations of
those classes. (Again, this is because of the weighted round-
robin used by the generrd scheduler.) Near the end of the
simulation, one by one most of the sources stop transmitting,
remaining idle for the duration of the simulation. This is

www.manaraa.com

FLOYD AND JACOBSON: LINK-SHARING AND RESOURCE MANAGEMENT MODELS 375

g ,------------ --------------r-—

toteltraffic //,_/

o 10 20 so 40 so
TimeIn seconds

Fig. 14. Three-agency link-sharing with Top-Level link-sharing guidelines.

shown at the bottom of the figure. These simulation results are
essentially the same for formal, Ancestor-Only, and Top-Level
link-sharing.

[n general, in simulations with Ancestor-Only link-sharing

the higher-priority classes sometimes receive slightly more
bandwidth than is allocated, and the agency-level link-sharing
is sometimes imprecise. The Ancestor-Only link sharing is also
more sensitive to the setting of the various parameters used in
computing the limit status of the interior classes. The problems
are reduced with Top-Level link-sharing, and these problems
do not occur in the simulations with formal link-sharing.

B. Priori~ Scheduling in a Link-Sharing Framework

A key feature of our link-sharing framework is the ability
to share bandwidth between classes with different priorities.
In this section we investigate some of the interactions between
priority-based schedulers and link-sharing.

The simulations in this section compare a priority-based
scheduler with a nonpriority-ba.sed scheduler that approx-
imates an idealized fluid flow model of link-sharing. For
these simulations, each agency has a real-time, interactive,
and ftp class. The goal of the simulations is to investigate
the advantages or disadvantages of giving interactive traffic
priority over the ftp traffic.

Simulations of two-agency link-sharing show that when
the arrival process for the interactive class is bursty, the use
of a priority-based scheduler that gives the interactive class
priority over the ftp class can significantly reduce the delay of
the interactive traffic without adversely affecting the average
throughput of the ftp traffic. More precisely, the simulations
show that the advantages of incorporating priorities in the link-
sharing structure are most pronounced when the arrival rate for

the higher-priority (interactive) class is moderately bursty and
the link bandwidth is significantly greater than the average
bandwidth received by the higher-priority class.

Fig. 15 shows the network scenario used for all of the
simulations in this section, and Fig. 16 shows the class struc-
ture for the congested link. In this paper we call a data
connection delay-sensilive if the user is concerned with the
delay of the individual packets or short bursts of packets in
the connection; examples include real-time, Telnet, X, and
NFS traffic. We call a data connection throughput-sensitive

Fig. 15,

TRAFFICSWRCES

1! QATEWAV
L. ~.J

1.5Mtfm
10m

-..
() SINK

.-.

General simulation scenario for the investigation of delay

&a3Mf2s3
1,5% 2,5% 3,10% 1,25% 2,25% %Wb

priority, fink+hwfng bmd+dth

Fig. 16, Link-sharing structure for the congested gateway,

if the connection transfers a fairly large number of packets,

and the user is only concerned with the arrival time of the
last packet in the transfer. An example of a throughput-

sensitive data connection would be a tile transfer where the
user would like to receive the file as promptly as possible,
but where the user is not concerned with the arrival time of
the individual packets. For the simulations in this section, we
assume that the traffic in the real-time class is constrained
by an admissions control procedure, and the traffic in the

interactive class is delay-sensitive but is not constrained by
an admissions control procedure. We assume that the traffic
in the ftp class is throughput-sensitive TCP traffic consisting

of large file transfers.
For the purposes of this section, we call a class uncontested

if there is no persistent queue, and congested otherwise. For
each simulation in this section only one of the two ftp classes
and only one of the two interactive classes is active. The
active ftp class consists of three ftp connections with maximum
windows set so that, in the absence of congestion, the three

ftp connections together could use most of the link bandwidth.

Thus, in these simulations the active ftp class is usually
congested. The simulator’s TCP is based on 4.3 Tahoe TCP.

The key parameter in these simulations is the average arrival
rate for the active interactive class. We are not attempting to
construct a realistic source model for the interactive class: our

goal is to investigate the delay and throughput of the various
classes in different simulations with different arrival rates and
degrees of burstiness for the interactive traffic. In the simulator

the agency A interactive class has a single UDP source that

generates bursts of four 1000 byte packets at exponential time
intervals, while the Agency B interactive class has a UDP

www.manaraa.com

376 IEWACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 4, AUGUST 1995

ageneyA Intaraelivepaokets

k

x x’
x,

agecq B ft$packets

1

IGCI Sco 400 500
Averag%val Ratefor InteractiveTraffii (inKbpa)

(Mid line:prlofffy-model,dashedha: fluid-flowmodel)

(part 1)

1 agencyA InteractiveIfaffc ~

x

100 201 300 4(YJ Soo
AvaragaArrivalRatefor IntaracflvaTraffk (InK@)

(solid line Piioftfy+ndaf,daahadline:fluki-flewmodel)

(part III)

Fig. 17. Scenario #l.

source that sends single 50 byte packets at exponential time
intervals. (The interaction class traffic could be thought of,
perhaps, as a single UDP video connection unconstrained by
an admissions control procedure, or as traffic from UDP-based
whiteboard sessions, or as the aggregate of a large number of
short-lived connections using nonstandard congestion control
mechanisms.) The arrival rate for the aggregate Agency A
interactive traffic is fairly bursty, while the arrival rate for the
aggregate Agency B interactive traffic is fairly smooth.

Two sets of simulations were run for each scenario in this
section. The first set of simulations, illustrated by a solid line in
subsequent figures, uses the link-sharing structure in Fig. 16.

This link-sharing structure takes advantage of both bandwidth
allocations and priorities for the interactive and ftp traffic. The
second set of simulations, illustrated with a dashed line, uses
a similar link-sharing structure, where the only change is that
the ftp classes have priority two instead of priority three. Thk
second set of simulations approximates an idealized fluid flow
model of instantaneous Iink-sharing, such as that proposed in
[18] for interactive and ftp traffic.

The simulations use the formal link-sharing guidelines. Each
class has its own Drop-Tail queue at the congested gateway,
where packets arriving to a full queue are dropped. The buffer
size for each class is 20 packets (well over the delay-bandwidth
product of four packets for a single connection). The average
queueing delay for traffic in a class is determined not only by
the priority level of the class, but also by the buffer size and

=

3
& L’---+-;=k

.........-........---.’.”””””””””
.,....=.........F”’””------- - ------ --..--

SJJancyAlhferacflwtraffic
..

0

100
Averag%tval Rete forktferacthfaTraffic(InKbps)

Soa a S&3

(Solidline pttrxffy-modal,daahadIlna fluid-ffowmodal)

(part 1[)

100 200 300 400 500
AvmagaArrfvalRate forInfaraoflvaTraffic(in I@@)

(Ratio intafacffvetrafficdahy, fluidflowmodel@fortfyrncdel)

(part Iv)

by the fraction of bandwidth available for that class.
In the first simulation scenario, shown in Fig. 17, the

Agency A interactive class and the Agency B ftp class are

the only active classes. Thus, the Agency A interactive class
is essentially allocated 20% of the link bandwidth, and the
Agency B ftp class is allocated 80%. Simulations are run for
a range of values for the arrival rate of the interactive traffic,
up to and exceeding the allocated rate for Agency A traffic.

In the priority-based simulation set, as long as the overall
arrival rate of the interactive traffic is not large, the small bursts
of interactive traffic are transmitted at the link bandwidth,
rather than spread out over the fraction of the bandwidth

allocated to that class.
The top graph in Fig. 17 shows the average queueing delay

for the interactive and ftp packets. Five 40 second simulations
were run for each arrival rate for the interactive traffic, with
five different seeds for the random number generator. The
solid line shows the average over the five simulations for
the priority-based link-sharing implementation, and the dashed
line shows the average for the fluid-flow-based link-sharing
implementation. The higher delay for the interactive traffic
during the heaviest congestion results from the fact that while
the interactive and ftp classes have buffers of the same size,
the ftp class receives four times as much bandwidth as the
interactive class.

The second graph in Fig. 17 shows the average throughput
for the interactive and ftp traffic. The dotted line shows

www.manaraa.com

FLOYD AND JACOBSON. LINK-SHARING AND RESOURCE MANAGEMENT MODELS 377

+

ageneyB ftpfmkets
+

realtimepackets

100 200 .WJ 400 51M
AverageArrivalR81eforInteraettveTraffic(inKbps)

(SolidM% priortfy-mcdel,dashedIirre:fluid-flowmodel)

(part I)

0

I agercy B ftptraffic
.

1
+

l---~+ ; ; :
............:-...-----------------

A Intereeflvetraffic
.- ------.

all realtimetrsffk
I

Ico 200 Km 400 503
AverageArrivalRatefor InterecuwTreffk (InKbPs)

(Solidline prforify-rrmdei,dashedIlnwfluid-flowmodel)

(part II)

103 200 203 400 500
AverageAnfvslRate forInteractiveTreffk (inKbps)

(Rati: interactivetreffkdelay,flufdflownwdeVpriorffymodel)

(pa 111)

Fig. 1X, .Wenarm #?.

the throughput that the interactive traffic would get if its
throughput matched its arrival rate.

The third graph in Fig. 17 shows the fraction of arriving

packets dropped for the interactive and ftp traffic. Because of

TCP’S congestion control procedures, the ftp traffic can be

controlled with only a small number of packet drops. For the

UDP-based interactive traffic, on the other hand, as the average

arrival rate exceeds the available bandwidth the fraction of
packets dropped increases sharply.

The bottom graph in Fig. 17 shows the ratio of the in-

teractive packets’ avemge queueing delay for the fluid-flow

and priority-based link-sharing. For those simulations with a

moderate arrival rate for the Agent y A interactive traffic (less

than 200 Kb/s), the average delay for the interactive traffic with

the fluid-flow link-sharing is four to nine times the average

a-A7’--

agencyB interaebvepackets
-. s

2Ca 4W E4MSlxtlWJ 12001400
AvaregeAnfvalRate forlnfetaefiwTrafffc(!mK@.@

(SW fine priority-modal,daafwdfine:fluid-w n-clef)

(part I)

. .X-------+

agefwy0 interactivetraffii

J1

200 400 600 Mm 10CJ3 1200
AveregaArdvelRatefcxInterecfiveTraffk (mKbpe)

(SolidIn= priority-madel.dashaf line:fluwtow MOM)

(part 11)

140U

Fig. 19, Scenario #3.

delay with the priority-based link-sharing, showing that for
these (somewhat artificial) circumstances the advantages of
the priority-based link-sharing can be significant.

In the second simulation scenario, with results shown in
Fig. 18, traffic is added for both real-time classes. The Agency
A real-time class consists of a single ON/OFF connection,
and the Agency B real-time class consists of five ON/OFF
connections. Each ON/OFF connection has a peak rate of 64
Kbps (4% of the link bandwidth), and an average rate at
most half of the peak rate. Thus both real-time classes are
uncontested.

As Fig. 18 shows. this addition of real-time traffic does not
change the benefits for the interactive traffic of having priority
over the ftp traffic class. The low deiay of the real-time class
results from its high priority and low arrival rate (lower than
the allocated bandwidth).

In the third simulation scenario, with results shown in
Fig. 19, the Agency A ftp class and the Agency B interactive

class are the only active classes. Thus, the Agency A ftp
class is essentially allocated 20~rI of the link bandwidth,
and the Agency B interactive class is allocated 80%. Given
these circumstances, there is little performance difference be-
tween the priority-based and the fluid-flow-based link-sharing
implementations. In either case the average delay for the

delay-sensitive packets is quite low.
Thus, these simulations illustrate that given a higher priority

class with bursty arrivals, coupled with a link bandwidth that

www.manaraa.com

378 tEEFJACM TRANSA~ONS ON NETWOR3GNG, VOL. 3, NO. 4, AUGUST 1995

is significantly larger than the average bandwidth available to
the class, the use of priorities by the general scheduler can
significantly limit the average delay for the higher priority
traffic, without adversely affecting the average bandwidth of
the lower priority traffic. Note, however, that these simula-
tions make no attempt to investigate whether realistic traffic
scenarios are likely to fit tlis condition of bursty arrivals for

aggregate interactive traffic.

VI. LtNK-SHiUUNG AND REAL-TfME TRAFHC

This section considers service models for real-time traffic,
paying particular attention to the relationship between link-
sharing goals and real-time service models. Because link-
sharing can be used to limit the bandwidth of traftic classes
during times of congestion, link-sharing isolates traffic classes

from each other. This isolation can bean important mechanism
in accommodating emerging service models in the Internet.
‘lWs isolation cart also be used to protect the needs of nonreal-
time traflic.

We use the term real-time trajlc to refer to traffic that has a
(fixed or adaptive) playback time. As discussed below, future
gateways could use explicit admissions control procedures for
real-time traffic.3 By nonreal-time trafjic we mean trafftc where
low delay might be desirable, but where, over reasonable time
scales, the receiver waits until packets are ultimately reeeived.
We believe that one danger in current tesearch on providing
real-time services is to discount the needs of nonreal-time
traffic (e.g., WWW, telnet, ftp) in the Inte3net.

One possibility for a scheduler at the gateway would be to
consider the needs of the real-time traffic first, and to schedule
the nonreal-time traffic after the needs of the real-time traffic
had been met, without having the scheduler enforce bandwidth
limitations on the real-time traffic [18], [8]. After the needs of
the real-time traffic had been met, link-sharing mechanisms
would be used to share the remaining bandwidth among the
nonreal-time classes. We argue, however, that this type of
approach to link-sharing is not sufficient. Either it could lead
to starvation of the nonreal-time traffic over substantial periods
of time, or it restricts the types of real-time traffic that could
be accommodated by the network. Further, this sole reliance
on the admissions control procedure and the policing of real-
time traffic at the edge of the network is ill-suited to the needs
of rate-adaptive video, and is problematic given the presence
of long-range dependence in real-time traffic [13].

Many service models for real-time traffic assume that real-
time connections would negotiate for a particular class of
service (including, for example, a certain average or maximum
delay, or allowing for a certain statistical fraction of packet
drops, as in [8]). A slightly different service model introduced
in [4] defines predictive service for loss-tolerant applications
with adaptive playback times. This model was motivated in

part by the emergence in the Internet of applications for audio-
and video-confetencing such as vat, the visual audio tool,
where the receiver adapts its playback time to the delay in

the network. This model of predictive service differed from
previous service models in that predictive-service connections
would not make art explicit agreement with the network that
the connection’s deterministic or statistical requirements about

delay and packet loss rates will be met. Instead, the admissions
control procedure for predictive service is based on measure-

ments of past traflic in the class, and these measurements

of past traffic are used as a predictor of futtue traffic. If
the mediction of future traffic is incorrect and the predictive.
service class becomes oversubscribed, then this might result
in increased delay artd/or drop rates for the predictive service
connections.

As an example of the need to protect nonreal-time traffic,
when the predictive service class’s predictions from past traffic

are incorrect there can be a conflict between the link-sharing

goals and the predictive service goal of imperfectly reliable
delay bounds for predictive service traffic. The commitment
of predictive service is that the network will use admissions
control procedures based on the past traffic of the network to
control the admissions of predictive service connections. When
these predictions from past traffic are reliable, the predictive
service packets should be delivered with appropriately low
delay. It is not possible, given such an admissions control
procedure, to make quantitative commitments about the level
of service when the predictions from past traffic turn out to be

unreliable. One option would be for the gateway to serve as
many predictive service packets as possible, given that other
real-time service commitments are met. Another option would
be for the gateway to restrict the predictive service trafftc as
necessary to meet the link-sharing goals, including the link-
sharing goal of allocating bandwidth for nonreal-time traffic
over some time interval.

For a link in the core of the network with frequent changes
in the number of predictive service connections, the effective-
ness of the admissions control procedure is assisted by the
large number of connections and the frequency with which
connections come and go. The assumption that past traffic is
a reliable guideline for future traffic is more effective when
there are a large number of predictive service connections. In
addition, for those times when the predictive service admis-
sions control procedure is overly optimistic, in the core of the
network tks can be corrected simply by waiting a short time
until some predictive service connections terminate.

In contrast, for a moderate-bandwidth link with a moderate
number of predictive service connections the predictive semice
class’s admissions control procedure could be less effective
in protecting the link-sharing goals. In those times when
the predictive service admissions control procedure has been
overly optimistic, this could be corrated either by waiting
until some of the (possible long-lived) predictive service
connections terminate, or by having the scheduler rate-limit
the predictive service traffic, dropping packets when the buffer
overtlows. Neither of these options violate the commitment
of the predictive service goal, which is to provide reliable
delay bounds contingent on the assumption that past traffic has
been a reliable indicator of future traffic. The second option,

3Cumnt ~u~lo ~d “j&. MC on tie Mbone has an informal.unenforced
admissions control procedure that depends on rough consensus between the

however, protects the quantitative link-sharing goals as well

users of the Mbone. as the predictive service goals.

www.manaraa.com

FLOYD AND JACOBSON: LINK-SHARING AND RESOURCE MANAGEMENT MODELS 379

If link-sharing is used to control the bandwidth of pre-
dictive service traffic during times of congestion, then this
possibility should be taken into account by the admissions
control procedure. In this case the predictive service admis-
sions control procedure should only admit new connections if
traffic measurements indicate that the delay would have been
acceptable even if the class as a whole had been restricted to its
allocated bandwidth. One implication of this would be not to
admit new predictive service connections when the aggregate

arrival rate for the predictive service class has been exceeding
the allocated predictive service bandwidth over relevant time
intervals.

To illustrate the possible interaction between link-sharing
and predictive service, consider a gateway with a link-sharing
structure that allocates 807c of the link bandwidth to the real-
time traffic and 209’o to the nonreal-time traffic. Assume that
this is coupled with a priority-based general scheduler that
gives priority to the real-time class, along with a conservative

admissions control procedure for real-time class that tries to
limit the real-time traffic to 50Yc of the link bandwidth. In this
case, the link-sharing scheduler would only be used to regulate
the bandwidth of the real-time class if the real-time class in
fact exceeded 80% of the link bandwidth over some interval
of time while the nonreal-time class had unsatisfied demand.
Given the goals of the admissions control procedure, this is
unlikely to happen, Thus the enforcement of link-sharing at
the gateway does not have to result in unacceptable service
for real-time traffic. At the same time, the presence of the
link-sharing mechanisms ensures that the nonreal-time class
will not be denied its allocated bandwidth for long intervals
of time.

Like the model of predictive service, it seems likely that
additional service models will emerge to meet the require-
ments of emerging real-time applications. One possible new
application is source- or receiver-based rate-adaptive video,
with a congestion control procedure to control the connection’s

traffic in response to congestion. In source-based rate-adaptive
video, the source adjusts its transmission rate in response to
feedback from the receivers, possibly using a layered coding
scheme [12 1, [11. With receiver-based rate-adaptive video, the
video source would partition the signal into separate layers,
transmitting each layer in a separate multicast group, and
receivers would unsubscribe from higher-bandwidth layers
when they are experiencing congestion [17].

These models of rate-adaptive video could be most easily
accommodated in a network with link-sharing, where each
gateway allocates a certain (possibly dynamic) link-sharing
bandwidth to a class of variable-bit-rate video connections.
In the absence of congestion, the video traffic could use as
much bandwidth’ as desired; in the presence of congestion,
the bandwidth of the video class would be controlled, and
some fraction of arriving video packets might be dropped at
the gateway until the video’s congestion control mechanisms
respond to reduce the congestion, In a bandwidth-limited
environment with video users that require a certain minimum
bandwidth. a minimum-bandwidth guarantee from the network
would require an admissions control procedure. For a class
of video traffic without requirements of a minimum per-

connection bandwidth (e.g., where the user would rather

receive 1 frame each 7/ seconds than receive no frames at
all), admissions control procedures would not be required.

VII. SHARING AND lSOLATION REVISITED

In [4] the authors propose that the addition of real-time
services to packet networks be viewed in terms of the two

basic principles of iscdarion and sharing. In this section we
discuss the implications of isolation and sharing within the
framework of link-sharing.

By isolating classes of traffic from each other in the net-
work, link-sharing encourages heterogeneity, and at the same
time allows connections using compatible congestion con-
trol procedures to enjoy the advantages of cooperation by
sharing bandwidth in a single class of traffic. Within a leaf
class, isolation between connections could be provided by a
round-robin-based scheduling algorithm such as Fair Queueing

[6], or sharing between connections could be provided by a
scheduling algorithm such as FIFO.

In [4], the authors propose that a predictive-service class
should use FIFO scheduling, because FIFO scheduling reduces
the tail of the delay distribution, compared to round-robin
scheduling, by reducing the delay of packets that arrive
at the gateway at the end of a burst of packets from a
single connection. Users within a predictive service class are
protected from misbehaving users by an admissions control

procedure that is coupled with policing at the edge of the
network. In this section we briefly discuss some of the benefits
of sharing for classes of best-effort (i.e., nonreal-time) traffic,
where the protection of the admissions control procedure is
replaced by the protection of compatible end-to-end congestion
control procedures for each connection.

One advantage of sharing and cooperation within a traffic
class includes the implementation efficiencies that come from
a minimum of per-connection state within the class. A second
advantage is the reduction of the tail of the delay distribution
that results from FIFO scheduling.

Other potential advantages of cooperation within traffic
classes are less obvious, and perhaps less easy to take advan-
tage of. For a TCP traffic class with noncooperative scheduling
algorithms such as Fair Queueing, the “fairness” of the band-
width sharing is completely local, and doesn’t take into
account such factors as the number of congested gateways or
the range of roundtrip times of the different connections. For a
traffic class with a FIFO scheduling algorithm and cooperating
connections using compatible congestion control algorithms,

the bandwidth distribution between the connections can reflect
such characteristics of the overall system as the range of
roundtrip times and the number of congested gateways for
each connection [9]. Using an end-to-end congestion control
algorithm, gateway scheduling algorithm, and gateway con-
gestion feedback algorithm that exploit this interaction with
system characteristics could perhaps improve on the purely
local fairness of round-robin-based schedulers.

However, to take advantage of sharing within a link-sharing
class of best-effort traffic, some form of monitoring might be
appropriate to ensure that all connections in the class are in

www.manaraa.com

3s0 IEE~ACM TRANSAC’HONS ON NETWORKING. VOL. 3, NO. 4, AUGUST 1995

fact using acceptable congestion control procedures. As an
example, with RED gateways it is straightforward to identify
connections that are using a large share of the class bandwidth
in times of congestion. Such classes could be isolated by being
reclassified to a lower priority or lower-bandwidth class.

VIII. RELATED WORK

The approach to link-sharing described in this paper is based
on CBQ, an approach proposed by V. Jacobson along with
other members of the End-to-end Research Group [3]. For
CBQ a single set of mechanisms is proposed to implement
link-sharing and real-time services. The mechanisms are a
classtjier to classify arriving packets to the appropriate class,

an estimator to estimate the bandwidth recently used by a
class, a selector to determine the order in which packets from
the various classes will be sent, and a delayer or overlimit
action to schedule traffic from classes that have exceeded their
link-sharing limits and are contributing to congestion. In this
paper we have introduced the terms general scheduler and
link-sharing scheduler as conceptual tools in exploring }ink-
sharing algorithms. The selector in CBQ roughly corresponds
to the general scheduler defined in this paper, and the delayer

or overlimit action roughly corresponds to the link-sharing
scheduler referred to in this paper.

As discussed in the Introduction, the structure of this paper
was motivated in part as a response to the scheduling archi-
tecture proposed in [18]. The Iink-slpring scheme proposed
in [18] has been discussed in Section VI. The approach in
[18], after defining a service model including both quality
of service commitments to individual flows and link-sharing
commitments to collective entities, is to define a precedence
ordering for the various service goals, including the link-
sharing goals, and to use this precedence ordering to specify
which commitments should be satisfied first at the gateway
when commitments conflict. The goals in [18] include guar-
anteed real-time service, predictive real-time service, several
classes of as-soon-as-possible service for nonreal-time traffic,
and hierarchical link-sharing.

Our paper does not attempt to outline a complete service
model, but presents an alternate approach to reconciling the
quality of service commitments and the link-sharing com-
mitments made by the gateway. The goal of hierarchical
link-sharing described in [18] is defined as approximating,
as close as possible, the bandwidth shares provided by an
idealized fluid flow model of instantaneous Iink-shating. There
are two significant differences between our approach to link-
sharing and the approach in [18].

First, the link-sharing goal in [18] is restricted to providing
link-sharing between entities (or classes) of the same priority.
The link-shaxing goal of approximating an idealized fluid flow
model does not allow for explicit link-sharing between two
classes with different service priorities, such as between a real-
time and a nonreal-time class, or between a telnet and a lower

priority ftp class of traffic.
Second, the link-sharing in [18] takes into account the band-

width used by real-time traffic, but the link-sharing algorithm
does not affect the scheduling of the real-time traffic. From

[18]: “Our architecture dictates that while the link-sharing
goals will affect the admission control decisions for real-time
flows, the link-sharing goals have no effect of the scheduling of
the real-time packets and only affect the scheduling of elastic

packets. We maintain that this is not just one possible way
of scheduling packets, but rather the only way consistent with
our service model.”

In contrast, Section VI of our paper discusses how the
explicit enforcement of link-sharing goals for real-time traf-
fic can aid the gateway in serving loss-tolerant real-time
traffic (e.g., real-time traffic with drop-preference, or with
rate-adaptive congestion control algorithms) by controlling
the bandwidth of such traffic while providing the benefits
of priority-based scheduling. Section VI of our paper also

presents our argument that this explicit enforcement of link-
sharing goals for real-time traffic does not violate the goals of
guarankzd or predictive real-time service, given appropriate
admissions control procedures, and contributes to the flexibil-
ity of the resource management architecture in accommodating
new service models.

[18] discusses the possibility of dropping a small percentage
of “preemptable” real-time packets at the gateway when other
service commitments are in danger of being violated, but
there is little discussion of how this could be accomplished.
It is our contention that such issues should be considered
within the context of hierarchical link-sharing; that is, the
decision of whether or not to drop packets from a particular
class should depend on whether or not that class, along with
ancestor classes, is substantially contributing to congestion in
the network.

Previous research on link-sharing has included simulation
studies of Fair Queueing between user classes, where a user
class could range from an individual application to a collection
of connections associated with a particular corporation or
government agency [5].

IX. CONCLUSIONS AND FUTURE WORK

One of the strengths of the link-sharing framework proposed
in this paper is that this framework allows for priority-based
or other scheduling algorithms at the gateway for real-time

traffic, while incorporating provisions to protect the link-
sharing behavior at the gateway. We argue that considering
the link-sharing goals and real-time service goals together
leads to more efficient and productive implementations of both
services.

The incorporation of link-sharing mechanisms along with
the provision of real-time serviees can simplify and add
robustness to the provision of real-time services in the Internet.
Link-sharing mechanisms, by isolating classes of the same
priority and protecting lower priority traffic from starvation,
can add to the flexibility of the Internet in protecting best-
effort traffic from higher-priority real-time traffic, or providing
appropriate isolation for new congestion control protocols
whose response to congestion differs from that of TCP.

There are a great number of open research questions con-
cerning network resource management. One such open ques-
tion concerns possible scenarios for the development and

www.manaraa.com

FLOYD AND JACOBSON: LINK-SHARING AND RESOURCE MANAGEMENT MODELS 38 I

.

Psofmts ofs bytes sent at ths stlocsti rsts of b bytdsocond 7

I
1 I

I
f (s,b) = slb ssoonds

Fig 20. Variablesfor the computation of the limit status of a class

integration of new service models into the Internet. For ex-
ample, it is not plausible that, for every potential new service
model (e.g., rate-adaptive video, or perhaps reliable mul-
ticast?), a new link-sharing class will be opened for that
service model on every link in the network to allow users to

experiment. However, it is possible that, following somewhat
the pattern of the evolution of the Mbone, some networks
or links in the Internet might consider creating a new link-
sharing class for a particular emerging service class, using
a somewhat ad hoc classification based on fields in the
packet headers. And if this turns out to be useful, then users
might request other networks to create similar link-sharing
classes, to expand the experience with the emerging service
class, before the service class is sufficiently mature for full
standardization. Ce~ainly one of the challenges in developing

resource management for the Internet will be (o continue the

ability to learn from working implementations deployed in
a somewhat decentralized fashion (e.g., the Mbone, or the
WWW). We believe that link-sharing mechanisms should be
one of the components in meeting this challenge,

APPENDIX A

IMPLEMENTATION IN OUR SIMULATOR

1) [mplementotion of the Estimator: The estimator deter-
mines the limit status of the classes in the class structure. This
appendix describes the implementation of the estimator in our
simulator; this is only one of several methods that could be
used to efficiently implement an estimator.

The two key parameters of the estimator are the time
constant for the estimator and the frequency with which the
estimator updates the limit status of each class. The time
constant of the estimator can be an explicit design parameter
at the gateway.

In our simulator, the gateway recomputes the limit status
for a class and its ancestor classes after the gateway transmits
a packet from that class. Our estimator uses an exponential
weighted moving average (EWMA) (as is used in TCP to com-
pute the average round trip delay [15]). This estimator looks at
recent inter-packet departure times, with a decaying weight for
the more distant packets, and indirectly computes the mean of
the inter-packet departure time, or (in the reciprocal) the mean
of the packet rate.

Let s be the size of the recently-transmitted packet in bytes,
let b be the link-sharing bandwidth allocated to the class in

bytes per second, and let t be the measured interdeparture time

between the packet that was just transmitted and the previous

packet transmitted from this class, as shown in Fig. 20. If the
gateway sends packets of size s from the class at precisely
the link-sharing bandwidth b allocated to the class, then the
interdeparture time between successive packets would be

j(!s, b) = s/b

seconds. Let

cliff = t – f(s, b)

be the discrepancy between the actual interdeparture time and
the “allocated” interdeparture time for that class for packets of
that size. Note that cliff is negative when the class is exceeding
its link-sharing bandwidth and nonnegative otherwise. Our

simulator computes avg, the exponential weighted moving
average of the cliff variable, using the following equation:

avg +- (1 – w)avg + w * cliff.

With properly scaled versions of the parameters, and with

the weight w chosen as a negative power of two, avg can

be computed with one shift and two add instructions [15].
In computing cliff, the function f(s. b) could be computed
explicitly, or could be determined by using the packet size ,9

as an index into an array for that class.
The weight w determines the time constant of the estimator.

If the sending rate for a class suddenly changes, causing the
computed value of the cliff variable to change from one value
to another, then it takes – 1/ ln(1 – IJI) packets to be sent
from that class before the computed estimate avg moves 63%
of the way from the old value of cliff to the new value [20].

This correspmds to a time consfatz[of roughly

– .$

I)ln(l – ?1))

seconds for a class sending .Y-byte packets at close to the

class’s allocated link-sharing bandwidth of b bytes/s.
The estimator should not allow a previously-idle class

to send an overly-large burst of traffic before that class
is estimated as overlimit. Thus, the implementation of the
estimator should explicitly consider the maximum burst that a
class can send, after having been idle for a long period, before
being considered overlimit. With our method for implementing
the estimator, a class that has used only a small fraction of its

allocated bandwidth for an extended period of time could have
a large value for the parameter avg. A previously-idle class
with a link-sharing allocation of b bytes/second and a value
of A for avg could send 7/, back-to-back s-byte packets before

www.manaraa.com

382 tEEtYACM TRANSACTtONSONNETWORKING, VOL. 3, NO. 4, AUGUST 19Ss5

being estimated as overlimit$ for

110d(s/b~.s/1) + 1)
n,<

1
–log(l – w) “

(1)

Thus, by limiting the maximum value for the variable avg.

the estimator can limit the number of back-to-back packets
that can be sent from a previously idle class before the class
is estimated as overlimit.

The implementation of the estimator should also explicitly
consider to what extent the limit status of a class should be
influenced by previous bandwidth the class has received in
excess of its allocated share. In our simulator, this is done
with a parameter that specifies a minimum (negative) value
for the variable avg.

Note that our estimator does not explicitly estimate the
bandwidth used by a class. The estimator is fairly accurate
in estimating whether a class is over or under its limit, but the
exact value of avg computed by the estimator can be sensitive
to things such as the packet sizes used by the class.

An alternate implementation for the estimator would be for
the gateway every t seconds to recompute the limit status for
each class over the last T seconds. This should be adequate
for t << T. Whh this implementation, the accuracy of the
gateway in satisfying the link-sharing goals is limited by the
ratio between T and t. The value for T is determined by the
desired time intervals over which the link-sharing goals should
be enforced. Given T, decreasing t increases the accuracy of
the gateway in satisfying the link-sharing goals.

For formal link-sharing, and for leaf classes in the
Ancestors-Only and the Top-Level link-sharing, the scheduler
needs tp know whether or not a class is overlimit. In this case
the estimator uses the actual link-sharing allocation b of the
class in computing f(s/b), the “allocated interdeparture time
between packets.

In contrast, for interior classes in the Ancestors-Only and
the Top-Level versions of link-sharing, the scheduler needs
to know whether or not the class is underlimit. For this, the
estimator uses a bandwidth b’ that is slightly less than the
link-sharing bandwidth b allocated to the class in computing
the “allocated” interdeparture time ~(s, b’). For example, in
computing whether or not the root class is underlimit, the
estimator in our simulator uses a bandwidth b’ slightly less than
the actual bandwidth of the link in computing the “allocated”
interdeparture time ~(s, b’) .

4This uses the fact that for a class sending back-to-back packets, the
measured interdeparture time would be s/1 seconds, for 1 the link bandwidth
in bytes per second. Wkh back-to-back packets, the computed (negative) vatue
for cliff would be s/1 –s/ b seconds. After n back-to-back packets, the value
for avg would be

n—l

(1 - w)”A + ~(1 – tu)*w(s/1 – ./b)
,=0

=(1 – w) ’’A+(1 - (1 –W)n)(S/~ –s/b).

The value for avg will still be positive as long as

A > (.s/b-s/J)((l – w)-” – 1).

This condition holds for values of n that satisfy (1) above.

In our simulator the value avg computed by the estimator is
used to indicate the limit status of the class through the class’s
time-to-send field. This field indicates the next time that the
gateway is allowed to send a packet from that class. For any
class with avg positive, the estimator sets the time-to-send
field to zero, indicating that the class is under its limit.

For a nonregulated class with avg negative (e.g., a nonleaf
class), the time-to-send field is set to a time z seconds ahead
of the cument time, for

I–W
x = —avg ~ + .f(s, b), (2)

where s is the size of the packet just transmitted from the
class. If the gateway waits at least z seconds before sending

another packet from the class, then the class will no longer
be over its limit.

For a regulated class with avg negative (e.g., a nonexempt
leaf class), the link-sharing scheduler sets the time-to-send
field for the class to ~(s, b) seconds ahead of the current time.
This is the earliest time that the class will next be able to
send a packet. Thus, a regulated class is never restricted by
the link-sharing scheduler to less than its allocated bandwidth,
regardless of the “excess” bandwidth used by that class in the
past. The link-sharing scheduler is described in Appendix A.3,

2) Implementation of the General Scheduler: The general
scheduler schedules packets from unregulated classes at the
gateway. This section describes the implementation of the
general scheduler in our simulator.

In our simulator, the gateway maintains a separate queue
for each class associated with the output link. After each

packet is transmitted on the output link, the general scheduler
decides which class can next send a packet on the link.
The general scheduler schedules packets from higher priority
classes first. Within classes of the same priority, the general
scheduler uses a variant of weighted round-robin, with weights
proportional to the bandwidth allocations of the classes. The
weights determine the number of bytes that a class is allowed
to send at each round. When a class sends more than its
allocated number of bytes (because packets aren’t broken into
byte-sized pieces), that class’s byte-allocation for the following
round is correspondingly reduced.

The use of weighted round-robin to service classes of the
same priority level serves two functions. The first function
is to ensure that each priority-one class receives its allocated
bandwidth even over fairly small time intervals. If at most half
of the link bandwidth is allocated to priority-one classes, then
each priority-one class with sufficient demand is guaranteed
to receive at least its allocated bandwidth in each round of the
round-robin [10].

The second function of the weighted round-robin is to
ensure that bandwidth is distributed to unregulated classes of
the same priority in proportion to the bandwidth allocations
of those classes. As discussed in Section II, the distribution
of the “excess” bandwidth among the other classes should
not be arbitrary, but should follow some appropriate set of
guidelines. The use of a priority-based general scheduler with
weighted round-robin within priority levels results in “excess”
bandwidth being distributed by the general scheduler to the

www.manaraa.com

FLOYD AND JACOBSON: LINK-SHARING AND RESOURCE MANAGEMENT MODELS 383

higher priority classes, with the distribution proportional to
the relative link-sharing allocations of those classes.

Before the general scheduler transmits a packet from a class,
the scheduler checks the limit status of the class simply by
comparing the class’s time-to-send field with the current time.
If the time-to-send field is zero, then the class is at-limit or

underlimit, and the general scheduler is allowed to transmit a

packet from that class. If the time-to-send field is nonzero but
less than the current time, then the class might be overlimit,
but the general scheduler is still allowed to transmit a packet
from that class.

If the time-to-send field for a class is greater than the current
time, then the class is overlimit. In this case, the general
scheduler can only send a packet from that class if permitted by

the link-sharing guidelines. (For example, with Ancestor-Only
link-sharing, if the time-to-send field for a class is greater than

the current time, then the general scheduler can only send a
packet from that class if there is an underlimit ancestor class.)

An essential issue for any proposal for a general scheduler
is that the scheduler should lend itself to efficient implementa-
tions. [19] describes an efficient implementation of the class-
based queueing mechanism that uses this general scheduler.

3) Implementation of the Link-Sharing Scheduler: The link-
sharing scheduler controls the scheduling of packets from
regulated classes. In our simulator the link-sharing scheduler,

working in concert with the general scheduler, effectively
rate-limits regulated classes to their allocated link-sharing
bandwidth.

Our simulator uses two different methods for rate-limiting
a regulated class. The two methods give similar results, but
depending on the circumstances, one or the other method might
be preferred for reasons of efficiency. We describe only one
of the methods in this section, involving the time-to-send field
for a regulated class. The second method, more appropriate for

a class that is forced to remain idle for a substantial number
of packet transmission times, involves temporarily removing
the class from the linked-list of classes at that priority level,
and reinserting the class later after a timer expires.

For the first method in our simulator, the link-sharing
scheduler sets the time-to-send field for a regulated class to
f(.s, h) = s/b seconds ahead of the current time, given that
the packet just transmitted contained s bytes, and the class
has a link-sharing allocation of b bytes/second. The result is
that the general scheduler considers the class as overlimit until
the time indicated in the time-to-send field; at that time the
general scheduler is allowed to send a packet from that class
regardless of the value of avg or the limit status of ancestor
classes. If the class is still overlimit after a packet is sent (as
indicated by the avg variable maintained for that class), then
the time-to-send field is again set to f(.s, b) = s/b seconds
ahead of the current time.

Notice that in our simulator, for a regulated class the
exact scheduling of packets from the regulated class is still
determined by the general scheduler. For a high-priority class,
given a priority-based general scheduler such as ours, the
general scheduler is likely to send a packet from a regu-
lated class soon after the time indicated in the time-to-send
field. For a lower priority class, the general scheduler could

be delayed somewhat longer before sending a packet from
a regulated class. If this happens frequently, then the avg
variable might change from negative to positive, indicating
that the previously -overlimit class is no longer overlimit, and
the class will no longer need to be regulated by the link-sharing
scheduler. At that point, the time-to-send field for that class
will be reset to zero.

4) Pubiically Available CBQ Distributions: Referenee [19]

contains a pointer to an unsupported version of the CBQ
code, available from ftp://cs.ucl.ac. uk/darpa/cbq.tar.Z. That
distribution is derived from code that predates some of the
research in this paper, and essentially implements a variant
of Ancestor-Only link-sharing that is not described in this
paper. A subsequent unsupported version of the CBQ code
is available from [14].

APPENDIX B

ANALYSISOF THE FORMAL LINK-SHARtNG GUIDELINES

This Appendix gives some additional discussion of the for-
mal link-sharing guidelines given in Section HI. In particular,
this section shows that as long as there is an unsatisfied
leaf class, no other class will be allowed to send a packet
unregulated if sending that packet would result in that class
having used more that its allocated link-sharing bandwidth
over the last 2’ seconds. Appendix B. 1 uses this to discuss
limitations on starvation for lower priority classes.

The formal link-sharing guidelines have the following prop-
erties:

● A class that is not overlimit will not be regulated. ❑

● When all classes are satisfied, no classes will be
regulated. c!

A further question concerns how long an unsatisfied class
might have to wait before it begins to receive its allocated

bandwidth. The bandwidth received by a particular class
depends on the priority of the class, given a priority-based
general scheduler, as well as on details of the estimator,
general scheduler, and link-sharing scheduler. However, we
can make some general observations. In this discussion, we
assume that the link-sharing scheduler rate-limits regulated
classes to their allocated link-sharing bandwidth.

For this section, for ease of analysis, we assume that the

limit status for each class is determined by, after each packet
has been transmitted, computing the bandwidth received by

each class over the last 2’ seconds.5 Further, for simplicity,
we assume that all packets are the same size, and that
all bandwidth allocations translate to an integer number of
packets/T-seconds. We also assume that a class is considered
overlimit at time t if sending a packet at time t would result
in that class having used more than its allocated link-sharing
bandwidth over the last T seconds. Again, for ease of analysis,
assume that a class is defined as having a “persistent backlog”
whenever the queue for that class is nonempty.

5We choose this method for the estimator because it seems easy to analyze,
but the link-sharing behavior is more robust with an EWMA-based estimator.
Unlike a plain moving-average estimator, an EWMA-based estimator can
place more limitations on the barrdwidth that can be used by a previously-idle
class before it is declared overlimit.

www.manaraa.com

3s4 IEEfYACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 4, AUGUST 1995

: Class Cl : Class C3

m : Class C2 m : Clase A
--- .-

--

--

--

--
I

--
11 ~1 *.b-- --: &---= ----l

t
;/4 T/3

time t
Fig. 21. Class A denied bandwidth for T + T/12 seconds.

We make the following assumptions about the link-sharing

structure: the root class is allocated 1007o of the link band-
width, and for each nonleaf class, the sum of the bandwidth

shares allocated to child classes equals the bandwidth allocated
to the class itself. (That is, if a class is allocated 50% of

the link bandwidth, then the sum of the allocations to the
child classes also equats 50$Z0.) We assume that no classes

are marked as bounded. We further assume that the general
scheduler is work-conserving; that is, the link will never be
idle when there is some class with a nonempty queue.

Assume that leaf class A is unsatisfied at time t. We make

the following additional observations:

● No class will be allowed to borrow from a nonleaf class

for as long as class A remains unsatisfied. Thus, as long as
leaf class A remains unsatisfied, the link-sharing structure
is effectively the same as one where all leaf classes

are children of the root class. Further, no classes will
be allowed to borrow even from the root class. In this
case, as long as class A remains unsatisfied, no other
class will be allowed to send a packet unregulated if
sending that packet results in that class using more that its

allocated link-sharing bandwidth over the last 2’ seconds.
All regulated classes will be rate-limited to their allocated

link-sharing bandwidth. •1

Limits on Starvation for Lower Priority Classes: In this
section, in addition to assuming that leaf class A first becomes
unsatisfied at time t, we assume that all other classes in the
link-sharing structure have higher priority that class A. We

give some quantitative bounds on how long class A could be

prevented from receiving its allcseated bandwidth.
It is not necessarily the case that in the first T-second

interval after time t, all leaf classes will receive at most their

allocated link-sharing bandwidth. For example, a previously-
idle class B with higher priority, allocated a fraction ~B of

the link-sharing bandwidth, could at time t send unrestricted
for fBT seconds, and after that would be rate-limited to its

allocated bandwidth, This class would receive more than its

link-sharing bandwidth over the interval [t, t + T]. Note that

this could occur only if the arrival rate of class 1? or of higher
priority classes changed significantly at time t.

.------ ------,

T;2 t
time t+T+T/12

1,pi 2:p2 l,p3 2,p4 l,p5 3,P3

priority,Iiik-sharing bandwidth

Fig. 22. Example link-sharing structure.

The following claim explores the limits on the bandwidth
that leaf classes can receive while there is an unsatisfied leaf

class.
Claim: Assume that leaf class A first becomes unsatisfied

at time t. For every class C~ other than class A, there is a time
ti, with t ~ ti< t+ T, such that class Ci receives at most its

allocated bandwidth over every interval [ti, tA] during which

class A remains unsatisfied. Further, if ti > t, then class C~
also receives at most its allocated bandwidth over the interval

[ti – T, ti] where ti – T < t.
Prooj2

Case 1: First, consider a class C that is overlimit at time t.

Then, over every interval [t, tA] during which class A remains
unsatisfied, class C receives at most its allocated bandwidth.

Case 2: Next, consider a class C that is not overlimit at
time t, and assume that class C first becomes overlimit later
at time tz.Beeause class C begins to be rate-limited to its

allocated bandwidth at time t2, and after time t2 only gets
to send unregulated if it is not overlimit, therefore for every
interval [t2, tA] during which class A remains unsatisfied,

class C receives at most its allocated bandwidth. Further,

because class C is not overlimit at any time in the interval
[t,t2],class C received at most its allocated bandwidth over

every T-second interval that ends at a time between i?and t2,
inclusive.

Case 2a: Assume that class C first becomes overlimit at
time tz ~ t + T. Then class C received at most its allocated

www.manaraa.com

FLOYD AND JACOBSON: LINK-SHARING AND RESOURCE MANAGEMENT MODELS

: Class Al m : Class B1 n : class cl

E
--- --

c1 ;

.,

--
I 11

--
*I

L----
II 911 I

----~ L--- -- _..! L ---- T----J b ---l----! I ~----~---->

t
Al, .i5T A2:.4T B1 , .45T B2, .4T Cl Al, .45T

time t
Fig 23. Class C2 denied bandwidth indefinitely, with Ancestor-Only link-sharing.

385

bandwidth over every T-second interval in [t, t2],and over the
interval [f z, tA]. Therefore, over every interval [t, tA] during
which class A remains unsatisfied, class C receives at most

its allocated bandwidth.

Case 2b: Assume that class C first becomes overlimit at
time t2 < t+ T. Then class C received at most its allocated
bandwidth over the T-second interval [tz – T, t2], and over ev-

ery interval Itz, tA] during which class A remains unsatisfied.
❑

Example: Limited Starvation for Class A: As an example
of the limits on the starvation that is possible for a lower
priority class, Fig. 21 shows the bandwidth received on a link
with a link-sharing structure with four classes, Cl, C’z, C3,

and .4, with priorities 1, 2, 3, and 4 respectively, with each
class allocated 1/4 of the link bandwidth. Class A had been
receiving all of the link bandwidth, and then at time t classes
C’l, Ca, and C:; each begin to have high demand. Class (71
receives all of the link bandwidth for T/4 seconds, after which
it is regulated to its link-sharing bandwidth. Similarly, classes
(’2 and C3 both get to transmit as shown in Fig. 21, and class
A receives no bandwidth for more than T seconds. And it is
possible to construct pathological link-sharing allocations and

arrival patterns where class A could wait significantly longer
before receiving any bandwidth. ❑

Thus, depending on the scheduling algorithms, and given
I) classes in the link-sharing structure with link-sharing al-
locations pl, ~, p,, (where class A is assigned link-sharing
allocation p,,), it is possible for class A to receive no band-
width at all for

11—]

E

Pi
T

~=~ 1 – 2;:; pj

seconds after time t. As an example, if each of the n classes
is allocated a fraction 1/n, of the link bandwidth, and class
A has the lowest priority, then for n. = 1000, class A could
receive no bandwidth at all for 6.5T seconds, given arrival
patterns planned by an adversary.

However, even this limited starvation of lower priority
classes is dependent on a pathological arrival process for the

higher-priority classes. If the arrival process for higher priority
classes did not abruptly change at time t, then classes that
are overlimit at time t would continue to be rate-limited, and

classes that are underlimit at time t would continue to be
underlimit. Thus, if the arrival rates for other classes did not
abruptly change at time t, class A would begin to receive its
link-sharing bandwidth soon after time t.

Note that the delay that a lower priority class can receive is
more limited if, as in the implementation in our simulator, the
estimator explicitly limits the bandwidth that a previously-idle
class can receive before being declared overlimit.

Further note that this potential for limited starvation only

applies to classes that are not of the highest priority level.
A class of the highest-priority is never forced to wait for
higher-priority classes. The bandwidth received by the highest-
priority classes is determined by the general scheduler, with
the only constraint that the class might be rate-allocated to its
link-sharing bandwidth in times of congestion.

APPENDIX C

A PATHOLOGICALCASE FOR ANCESTOR-ONLY LINK-SHARING

In this section we examine a pathological case that can occur

in Ancestor-Only link-sharing, given an adversary who is
controlling the traffic arrival pattern in order to deny bandwidth
to a particular class. ‘l%e example in this section also helps
explain the rule in formal link-sharing that a class cannot
borrow from a not-overlimit ancestor at level i if there is
an unsatisfied class at level z – 1, even if that class is not
a descendant of the ancestor class.

Consider the link-sharing structure in Fig. 22, and consider
a priority-based generaI scheduler with Ancestor-Only link-
sharing. Further, consider the following (highly unrealistic)
packet arrival process. Assume that, at time t, packets arrive
for both class Al and class C3, and further assume, for
simplicity, that the link class is at-limit, having transmitted
only packets from class C 1 in the last T seeonds. Cktss A 1 is
allowed to transmit for PI T seconds because it is not overlimit,
and then for p2 T additional seconds because the parent class A
is underlimit. Because the root class is at-limit, class A 1 is not

www.manaraa.com

386 tEEE/ACM TRANSACTIONS ON NETWORRfNG,VOL. 3, NO. 4, AUGUST 1995

allowed to borrow from the root class. Assume, conveniently
enough, that no more packets arrive for class A 1, and that
class A 1 now has an empty queue.

Assume that packets then arrive for class A2. Class A2 is
allowed to transmit for P2T seconds. Again assume that no
more packets arrive for class A2, and that after p2T seconds
class A2 again has an empty queue.

The same process repeats for Agency B. Class B1 transmits

for (P3 + p4)’T seeonds, and then class B2 transmits for PAT
seconds. Then packets arrive for class C 1, which by that time
is underlimit, and class C 1 transmits for p5T seconds.

Consider the following allocations: Let PI, 233, P5, and Psj be

0.05, and let p2 and p4 each be 0.40. The bandwidth on the
congested link is shown in Fig. 23, with classes A 1, A2, B 1,
and B2 transmitting in turn after time t.Then, after C 1 has
transmitted for p5T seconds, Agency A is no longer overlimit
(beeause no packets from Agency A have been transmitted in
the last (p3 + 2p4 +p5)T = 0.9T seconds). If this pathological
traffic arrival process qeats, then the cycle continues to repeat
itself. Class Al again sends for (pl + p2)T seconds, at which
point Agency A again becomes overlimit. Then class A2 sends
for p2T seconds, and then Agency B classes send, and so on,
and class C3, being of lower priority, never sets to send any
packets.

We emphasize that this pathological case requires Ancestor-
Only link-sharing and a highly artificial packet arrival pattern,
and is helped by a moving-average estimator without expo-
nential decay. For example, consider what would happen if,
with a more realistic packet arrival pattern, packets continued
to arrive for class Al after A 1 had transmitted packets for

(PI + P2)T seconds. Class Al would be regulated to its link-
sharing albeation of a fraction pl of the link bandwidth, and
the cycle of class Al receiving all of the link bandwidth, and
then reeeiving none of the link bandwidth, would be broken.
Similarly, if classes A2, B 1, and B2 continued to have arriving
packets after their bursts of using the link bandwidth, then
those classes also would continue to be regulated to their link-
sharing allocations, and there would be no starvation of class
C3.

Note that the pathological behavior described above cannot
occur with the formal link-sharing guidelines, because in that
case children are not allowed to borrow from parent classes
while a leaf class is unsatisfied.

ACKNOWLEDGMENT

The authors would like to thank D. Clark, S. Shenker, L.
Zhang, and members of the IRTF End-to-End Research Group
for many discussions (and disagreements) on link-sharing and
other issues of resouree management, and J. Crowcroft, S.
Jamin, G. Minshall, V. Paxson, and J. Spagnolo for helpful
feedback on various stages of this paper. Thanks also go to

S. McCanne, who has done much of the work in modi@htg

and maintaining our simulator, and again to S. Jamin, who has
also made contributions to our simulator.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

REFERENCES

J.-C. Bolot, T. Turletti, and I. Wakemarr, “Scsdable feedback control for
mukicaat video distributionin the Internet,” in Prrsc. SIGCOMM ’94,
Aug. 1994, pp. 58-67.
B. Bradcn, D. Clurk, and S. Shenker, “Integrated services in the intemet
architecture: An overview,” Request for Comments (RFC) 1633, IETF,
June 1994.
D. Clark and V. Jacobson, “Ftexible and efficient resource management
for datagrarrr networfcs: unpublished manuscript, Apr. 1991.
D. Clark, S. Shertker, and L. Zhang, “Supporting rest-time applications
in an integrated sawices packet network Architecture and Mechanism,”
in Proc. SIGCOIU.M ’92, Aug. 1992, pp. 14-26.
J. Davin and A. Heybey, “A simulation study of fair queueing and policy
etrforcement; ACM Corrsput. Conrrrsun. Rev., vol. 20, no. 5, pp. 23-29,
Oct. 1990.
A. Derncrs, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm: hrtemetworking: Res., Exper., pp. 3–26, vol.
1, 1990.
H. Eriksson, “MBone: The multicast backbone; C’omsnwr. ACM, vol.
37, no. 8, pp. 54-60, Aug. 1994.
D. Ferrari, A. Banerjea, and H. Zhang, “Network support for multimedia
A discussion of the tenet approach,” to appear in Special Issue on
Multire4a Networking, Computer Networks and lSDN Systems, 1994.
S. Floyd, “Connections with multiple congested gateways in packet-
switched networks-Part 1: One-way traf6c,” Comput. Cmnnrun. Rev.,
vol. 21, no. 5, pp. 3047, Oct.1991.
_, “Notes on guaranteed service in resource management; unpub-
lished maorrscript, Mar. 1993.
S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEELVA CM Trons. Networking, vol. 1, no. 4,
p. 397-413, Aug. 1993.
M. Garrett and M. Vetterli, “Joint source/chaonel co&rg of statistically
multiplexed real-time services on packet networks,” IEEWACM ‘frosts.
Networking, vol. 1, no. 1, pp. 71-80, Feb. 1993.
M. Garrett and W. Wlllinger, “Analysis, modeling and generation of
self-similar VBR video traffic,” in Pruc. .VGCOMM ’94, Aug. 1994,
pp. 269-280.
D. Hoffman, “Implementation report on the LBJfUCIJSun
CBQ kernel,” presentation to the RSVP Working Group of the
IETF, IETF, July 1994. URL http://www.ietf. cnrixcston.va.ud
proccedhrgsD4jul/tsv/ rsvp.hoffman.slides. htrnl. “An early access
experimerrtat release of Sokuis RSVP/CBQ” is available
from fip://play~ound.sun.codpub/rsvp/soltis-mvp-l*st.ti.Z.
Warning-This consists of 15 Mbytes of compressed code.
V. Jacobson, Congestion avoidance and control, in Proc. .WGCOMM
’88, Aug. 1988, pp. 314-329.
S. Jarnin, S. Shenker, L. Zhaog, and D. Clark “An admission control
algorithm for predictive real-time service,” in Proc. 3rd Im. Workshop
on Networking and Oper. Syst. Support for Digital Audio, V7deo, San
Diego, CA, Nov. 1992, pp. 73-91.
S. McCanoe, private communication, Oct. 1994.
S. Shcnker, D. Clark, and L. ZJmng, “A scheduling service model and
a scheduling architecture for an integrated services packet network,”
working paper, Xerox PARC, Aug. 1993.
I. Wakeman, A. Ghosh, J. Crowcroft, V. Jacobson, and S. Ftoyd,
“Implementing mat time packet forwarding policies using streams: in
Userrix 1995 Tech. Ccmf., New Orleans, LA, Jars. 1995, pp. 71-82. URL
tlp//cs.rrcLac.uk/darpa/usenix-cbq.ps.
P. Young, Recursive Estimation and Jitne-Series Analysis. New York:
Sprirrger-Verlag, 1984, pp. 60-65.
L. Zhsmg, S. Deering, D. Estrin, S. Shenker, and D. zappal~ “RSVP
A new r&ource Reservation ps-mtocol,”IEEE Network, ‘Sept. 1993.

Safty Floyd (S’88-M’89), for a photograph and biography, see the June 1995
issue of this TRANsAm10N5, p. 244.

VmrJacobson is a Research Scientist at Lawrence Berkeley Laboratory

